
THE STATE OF CONTAINERS
On HPC Systems where I have played with Singularity containers

Michael Bareford

Contents

1. Containers and Singularity
2. Container Factory (UoE specific)
3. Running Containers on a HPC Platform
4. Baremetal Performance Comparisons

(using openmpi v4 and gcc)

5. Summary...

2

What is a Container?

Containers can be thought of as lightweight virtualisations
• are less separate from the host compared to virtual machines
• share the kernel of the host OS
• are a combination of Linux namespaces and controlgroups (cgroups)

Container OS must be compatible with the host OS kernel
• for HPC, container OS must be based on Linux, e.g., Ubuntu

3

Containers are Lightweight Virtualisations

4

David Eyers, Sarah Stevens, Andy Turner and Jeremy Cohen
Containers for reproducible research

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

5

David Eyers, Sarah Stevens, Andy Turner and Jeremy Cohen
Containers for reproducible research

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

Containers and File Systems

Host FS Container FS

Singularity maps particular directories into the container by default,
e.g., $HOME, /etc/passwd, /tmp.

https://imperialcollegelondon.github.io/2020-07-13-Containers-Online/01-introduction/index.html

Why Singularity (and not Docker)?

Singularity images are handled as (SIF) files where an
image is instantiated as a container.

6

Why Singularity (and not Docker)?

Singularity images are handled as (SIF) files where an
image is instantiated as a container.

Singularity can be run entirely within “user space”: no
administrative-level privileges required to run containers on
a platform where Singularity has been installed.

7

Why Singularity (and not Docker)?

Singularity images are handled as (SIF) files where an
image is instantiated as a container.

Singularity can be run entirely within “user space”: no
administrative-level privileges required to run containers on
a platform where Singularity has been installed.
Singularity can support natively high-performance
interconnects, such as InfiniBand and Intel Omni-Path
Architecture (OPA).

Singularity is designed for parallel execution.

8

When does Singularity need root permissions?

Installation
• unless you configure with “–without-setuid” option

• all containers must be run within sandbox directories
• https://sylabs.io/guides/3.6/admin-guide/user_namespace.html#userns-limitations

9

https://sylabs.io/guides/3.6/admin-guide/user_namespace.html

When does Singularity need root permissions?

Installation
• unless you configure with “–without-setuid” option

• all containers must be run within sandbox directories
• https://sylabs.io/guides/3.6/admin-guide/user_namespace.html#userns-limitations

Building Containers
• Linux distros package software to be installed by root
• need a container “factory”: a Linux host where you have root permissions
• compiling code on one machine but running on another has challenges

a) less performant
b) compiler availability

10

https://sylabs.io/guides/3.6/admin-guide/user_namespace.html

Singularity and MPI

Ideally, we’d build the container so that it contains a version
of OpenMPI that is identical to the OpenMPI running on the
host.
The MPI library running on the host and in the container
have to be at least ABI compatible*.

11

*The ABI compatibility initiative is an understanding between various
MPICH derived MPI implementations (MPICH, Intel MPI and Cray MPT)
to maintain runtime compatibility between each other.

Singularity and MPI

Ideally, we’d build the container so that it contains a version
of OpenMPI that is identical to the OpenMPI running on the
host.
The MPI library running on the host and in the container
have to be at least ABI compatible.

Singularity has two solutions for integrating the container
and the host with respect to MPI.

12

Singularity Hybrid Model

13

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

The MPI installation in the container links back to the MPI installation on the host.

Singularity Hybrid Model

14

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon, ORTED

Singularity
Container and namespace environment
MPI application within container

MPI libraries
use PMI to connect back to ORTED

The MPI installation in the container links back to the MPI installation on the host.

Singularity Hybrid Model

15

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon, ORTED

Singularity
Container and namespace environment
MPI application within container

MPI libraries
use PMI to connect back to ORTED

• Container MPI must be compatible with host MPI.
• Container MPI must be configured for host hardware if performance is critical.

The MPI installation in the container links back to the MPI installation on the host.

Singularity Bind Model

16

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon (ORTED)

Singularity
Container (bound to host MPI)
MPI application (within container)

MPI libraries

No container MPI instead Singularity mounts/binds the host MPI in/to the container.

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

• MPI configuration should be optimal for host.
• Container MPI app must be compatible with host MPI.

Singularity Bind Model

17

Parallel Job Launcher (e.g., mpirun)
Process Management Daemon (ORTED)

Singularity
Container (bound to host MPI)
MPI application (within container)

MPI libraries

No container MPI instead Singularity mounts/binds the host MPI in/to the container.

[host]$ mpirun ... singularity exec ... /path/to/container/sif /path/to/mpiapp ...

• MPI configuration should be optimal for host.
• Container MPI app must be compatible with host MPI.

• Forthcoming examples use the hybrid model.

Container Factory

A container factory can be setup as an instance within the
UoE's Research Cloud Service, Eleanor, which is based on
OpenStack.

A user automatically has root access to any cloud instance
that is created from within their Eleanor account.

https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/cloud

https://www.wiki.ed.ac.uk/display/ResearchServices/Eleanor

Please note, links may not be accessible to users outside UoE.

18

https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf/cloud
https://www.wiki.ed.ac.uk/display/ResearchServices/Eleanor

Container Factory

A container factory can be setup as an instance within the
UoE's Research Cloud Service, Eleanor, which is based on
OpenStack.

A user automatically has root access to any cloud instance
that is created from within their Eleanor account.

Once you have setup an instance (running Ubuntu 19.10
say), you can then create an instance image (or snapshot),
which can then be made public or shared with specific
projects (or users).

19

Eleanor Research Cloud Service

All UoE staff have access to the “Free Tier” level of resource,
e.g., 1 vCPU, 1 GB memory, 20 GB disk (t1.small flavor).

First, you need to create a free new cloud project within your
ECDF* Storage Manager Account.

20

*Edinburgh Compute and Data Facility
https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf

https://www.ed.ac.uk/information-services/research-support/research-computing/ecdf

Eleanor Research Cloud Service

All UoE staff have access to the “Free Tier” level of resource,
e.g., 1 vCPU, 1 GB memory, 20 GB disk (t1.small flavor).

First, you need to create a free new cloud project within your
ECDF Storage Manager Account.

Eleanor Cloud instances are managed via web-based
interface called Horizon.

21

Eleanor Horizon

22

ssh -i mbcloudkey.pem ubuntu@172.16.50.15

https://horizon.ecdf.ed.ac.uk/dashboard/project/instances/
(link not accessible to non-UoE personnel)

https://horizon.ecdf.ed.ac.uk/dashboard/project/instances/

Eleanor Command Line

23

1. Create your own public-private key pair.

2. Download your Eleanor user credentials (OpenStack RC v3 file).

3. Setup a miniconda3 environment on your local machine, installing
python-heatclient and python-openstackclient packages.

24

You can now setup a cloud instance from the command line.

. ./ft_mbarefor-openrc.sh
openstack stack create -t ubuntu.yml container-factory

See next slide for example of a cloud instance script (ubuntu.yml).

Eleanor Command Line
1. Create your own public-private key pair.

2. Download your Eleanor user credentials (OpenStack RC v3 file).

3. Setup a miniconda3 environment on your local machine, installing
python-heatclient and python-openstackclient packages.

Eleanor Instance Script (ubuntu.yml)

25

heat_template_version: 2015-04-30

description: Quickly create a Ubuntu instance and give it an IP address

resources:
my_instance:

type: OS::Nova::Server
properties:

key_name: mbcloudkey
image: Ubuntu 18.04
flavor: t1.small
networks:

- network: VM Network Private
my_ip:

type: OS::Nova::FloatingIP
properties:

pool: Floating Network Private (UoE access only)
assoc:

type: OS::Nova::FloatingIPAssociation
properties:

floating_ip: { get_resource: my_ip }
server_id: { get_resource: my_instance }

outputs:
instance_ip:

description: IP address of the instance
value: { get_attr: [my_ip, ip] }

26

https://horizon.ecdf.ed.ac.uk/dashboard/project/instances/
Find external IP address at

You can now setup a cloud instance from the command line.

. ./ft_mbarefor-openrc.sh
openstack stack create -t ubuntu.yml container-factory

Eleanor Command Line
1. Create your own public-private key pair.

2. Download your Eleanor user credentials (OpenStack RC v3 file).

3. Setup a miniconda3 environment on your local machine, installing
python-heatclient and python-openstackclient packages.

ssh -i mbcloudkey.pem ubuntu@172.16.50.15

(link not accessible to non-UoE personnel)

https://horizon.ecdf.ed.ac.uk/dashboard/project/instances/

Building a Container at the Factory

27

Install Singularity 3.6.1 (and Go 1.14.1)
possible to support multiple Singularity versions

Build a container

DEFS=$HOME/work/scripts/def
NAME=ramses-ubuntu19-openmpi4

sudo singularity build $NAME.sif \
$DEFS/$NAME.def \
&> $NAME.out &

• build takes around 30 mins
• resulting SIF is approx 600 MB
• singularity inspect -d ramses-ubuntu19-openmpi4.sif

Singularity Container Definition File
28

Bootstrap: library
From: ubuntu:19.10

...

%files
~/work/scripts/post_start.sh /opt/
~/work/scripts/post_stop.sh /opt/
~/work/builds/dirac/ramses/scripts.tar.gz /opt/
~/arc/apps/dirac/ramses-18.09.tar.gz /opt/

...

%post
. /opt/post_start.sh

ubuntu-19.10.sh

hwloc.sh 2.2.0
openmpi.sh 4.0.3

ramses.sh 18.09

. /opt/post_stop.sh

...

Boostrap: library
From: ubuntu:19.10

%setup...

%files...

%environment...

%post...

%runscript...

%startscript...

%test...

%labels...

%help...

https://sylabs.io/guides/3.6/user-guide/definition_files.html

https://sylabs.io/guides/3.6/user-guide/definition_files.html

Container OS Script for Ubuntu 19.10
29

#!/bin/bash

ubuntu 19.10 is updated such that it supports infiniband comms

echo "deb http://us.archive.ubuntu.com/ubuntu \
eoan main universe restricted multiverse" > /etc/apt/sources.list

apt-get -y update
apt-get -y install build-essential uuid-dev libssl-dev \

libseccomp-dev libgpgme11-dev iputils-ping \
squashfs-tools wget git \
subversion pkg-config m4 \
gfortran zlib1g-dev vim \
bc autoconf autogen \
environment-modules libtool libibverbs-dev

apt-get -y upgrade
apt-get -y dist-upgrade

install support for intel omni-path comms architecture
apt-get -y update
apt-get -y install opa-fm opa-fastfabric libpsm2-2 \

libpsm2-2-compat libpsm2-dev libpmix2

apt-get -y upgrade
apt-get -y dist-upgrade

ubuntu-19.10.sh

Container Component Script for OpenMPI

30

#!/bin/bash

VERSION=$1
MAJOR_VERSION=`echo "${VERSION}" | cut -d"." -f 1-2`
NAME=openmpi-${VERSION}
ROOT=/opt/${NAME}

ARC_LINK=https://download.open-mpi.org/release/open-mpi/v${MAJOR_VERSION}/${NAME}.tar.gz

CFG_ARGS="CC=gcc CXX=g++ FC=gfortran --enable-mpi1-compatibility
--enable-mpi-fortran --with-verbs --with-hwloc=/opt/hwloc-2.2.0"

install_cmp.sh ${NAME} ${ROOT} ${ARC_LINK} "${CFG_ARGS}"

update_env.sh ${ROOT} OPENMPI_NAME ${NAME}
update_env.sh ${ROOT} OPENMPI_ROOT ${ROOT}
update_env.sh ${ROOT} MPI_HOME ${ROOT}
update_env.sh ${ROOT} MPI_RUN ${ROOT}/bin/mpirun

add support for running hybrid mpi
update_env.sh ${ROOT} OMPI_DIR ${ROOT}
update_env.sh ${ROOT} SINGULARITY_OMPI_DIR ${ROOT}

echo ". ${ROOT}/env.sh" >> /opt/env.sh
echo ". ${ROOT}/env.sh" >> $SINGULARITY_ENVIRONMENT

openmpi.sh 4.0.3

Container Component Script for Ramses

31

#!/bin/bash

VERSION=18.09
NAME=ramses
ROOT=/opt/apps/${NAME}
mkdir -p /opt/apps
mv /opt/ramses-${VERSION}.tar.gz /opt/apps/
cd /opt/apps
tar -xvzf ramses-${VERSION}.tar.gz
rm ramses-${VERSION}.tar.gz

if test -f "/opt/env.sh"; then
. /opt/env.sh

fi

cd ramses/bin
make clean
make
make clean
update_env.sh ${ROOT} RAMSES_NAME ${NAME}
update_env.sh ${ROOT} RAMSES_ROOT ${ROOT}
echo ". ${ROOT}/env.sh" >> $SINGULARITY_ENVIRONMENT

ramses.sh 18.1

Factory Sustainability (initial thoughts)

32

Scripts for Singularity definition files and container builds held on github.
https://github.com/mbareford/container-factory

Should be possible for other (EPCC) Eleanor users to launch factory instance
from snapshot image.

Typical workflow would include the following.
1) login to personal cloud instance
2) fork and clone “container-factory” git repo
3) build containers
4) push new scripts to forked repo
5) create pull request for original (upstream) repo

At some point, “container-factory” repo will be moved
to https://github.com/EPCCed

https://github.com/mbareford/container-factory
https://github.com/EPCCed

33

Multiple Singularity/Go installations

Basic packages
• build-essential, squashfs-tools, wget, git, vim

ssh config info for uploading SIF files to HPC hosts
• individual factory users would need to create their own ssh

keys within their own factory instance

Factory Snapshot Image (initial thoughts)

Running Container on a Tier-2 HPC Host
34

#!/bin/bash --login

...

module load openmpi/4.0.3
module load singularity/3.6.1

...

MPIRUN_PREFIX_OPT="--prefix ${OPENMPI_ROOT}"
MPIRUN_RES_OPTS="-N ${NCORESPN} -n ${NCORES} --hostfile ${APP_RUN_PATH}/hosts --bind-to core"
MPIRUN_MCA_OPTS="--mca btl ^sm --mca btl_openib_allow_ib true"
MPIRUN_OPTS="${MPIRUN_PREFIX_OPT} ${MPIRUN_RES_OPTS} ${MPIRUN_MCA_OPTS}"

SINGULARITY_OPTS="exec -B /etc/libibverbs.d"
mpirun $MPIRUN_OPTS singularity exec -B /etc/libibverbs.d \

$HOME/containers/dirac/arc/ramses-ubuntu19-openmpi4.sif
/opt/apps/ramses/bin/ramses3d $APP_PARAMS &> $APP_OUTPUT

...

Batch submission script

35

Cirrus (pre-upgrade)

SGI ICE XA
Intel Xeon (Broadwell)

36 cores per node
256 GB mem

Infiniband (FDR)
54.5 Gb s-1

...but using
verbs interface

36

Cirrus (pre-upgrade)

SGI ICE XA
Intel Xeon (Broadwell)

36 cores per node
256 GB mem

Infiniband (FDR)
54.5 Gb s-1

...but using
verbs interface

37

CSD3 (Peta4)

Intel Xeon Skylake
32 cores per node

192 GB mem

Intel OPA (PSM2)
100 Gb s-1

...but again using
verbs interface

38

CSD3 (Peta4)

Intel Xeon Skylake
32 cores per node

192 GB mem

Intel OPA (PSM2)
100 Gb s-1

...but again using
verbs interface

OpenMPI 3.1.5
OpenMPI 4.0.3

39

CSD3 (Peta4)

Intel Xeon Skylake
32 cores per node

192 GB mem

Intel OPA (PSM2)
100 Gb s-1

...but again using
verbs interface

OpenMPI 3.1.5
OpenMPI 4.0.3

40

GROMACS 2016.1: 1400k-atom (pair of hEGFR Dimers of 1IVO and 1NQL)

CASTEP 18.1: 270-atom sapphire surface with a vacuum gap (al3x3)

CP2K 6.1: H2O-1024

Some Established ARCHER Codes

41

GROMACS 2016.1: 1400k-atom (pair of hEGFR Dimers of 1IVO and 1NQL)

CASTEP 18.1: 270-atom sapphire surface with a vacuum gap (al3x3)

CP2K 6.1: H2O-1024

Some Established ARCHER Codes

It was straightforward to build GROMACS container at the factory
(GROMACS itself was built using cmake 3.14.1).

42

CSD3 (Peta4)

Intel Xeon Skylake
32 cores per node

192 GB mem

Intel OPA (PSM2)
100 Gb s-1

...but using
verbs interface

43

GROMACS 2016.1: 1400k-atom (pair of hEGFR Dimers of 1IVO and 1NQL)

CASTEP 18.1: 270-atom sapphire surface with a vacuum gap (al3x3)

CP2K 6.1: H2O-1024

Some Established ARCHER Codes

It was straightforward to build GROMACS container at the factory
(GROMACS itself was built using cmake 3.14.1).

CASTEP could not be compiled at the factory due to the Eleanor instance
having insufficient memory (free tier provides just 1 GB).

• mpif90 compiler unable to allocate memory for compilation of "ion.f90”

Post Factory Customization (CASTEP)

44

aux
install_cmp.sh
update_env
...

os
ubuntu-19.10

cmp
openmpi.sh
mkl.sh
fftw.sh
...

app
castep

csd3
castep.sh

cirrus
castep.sh

...
...

Container /opt/scripts

Post Factory Customization (CASTEP)

45

aux
install_cmp.sh
update_env
...

os
ubuntu-19.10

cmp
openmpi.sh
mkl.sh
fftw.sh
...

app
castep

csd3
castep.sh

cirrus
castep.sh

...
...

Container /opt/scripts
ssh <hostname>

...

tar -xvf castep-18.1.tar.gz
rm castep-18.1.tar.gz
cd castep-18.1

singularity shell /path/to/sif
. /opt/scripts/app/castep/<hostname>/castep.sh
exit

Host Customization Workflow

46

CSD3 (Peta4)

Intel Xeon Skylake
32 cores per node

192 GB mem

Intel OPA (PSM2)
100 Gb s-1

...but using
verbs interface

47

GROMACS 2016.1: 1400k-atom (pair of hEGFR Dimers of 1IVO and 1NQL)

CASTEP 18.1: 270-atom sapphire surface with a vacuum gap (al3x3)

CP2K 6.1: H2O-1024

Some Established ARCHER Codes

It was straightforward to build GROMACS container at the factory
(GROMACS itself was built using cmake 3.14.1).

CASTEP could not be compiled at the factory due to the Eleanor instance
having insufficient memory (free tier provides just 1 GB).

• mpif90 compiler unable to allocate memory for compilation of "ion.f90”

CP2K is easily the hardest of the three codes to compile.
• also hits factory memory limit during compilation of libxc
• some components such as libgrid have to be built on host

48

Post Factory Customization (CP2K)

Building CP2K first requires building many third-party libraries and some of these are
host specific.

• libxsmm: targets Intel platforms for specialized matrix operations
• libgrid: automatically tunes CP2K's kernel routines for particular hardware

csd3
libxsmm.slurm
libxsmm.sh
libgrid.slurm
libgrid.sh
cp2kexe.slurm
cp2kexe.sh

/opt/scripts/app/cp2k/

49

Post Factory Customization (CP2K)

Building CP2K first requires building many third-party libraries and some of these are
host specific.

• libxsmm: targets Intel platforms for specialized matrix operations
• libgrid: automatically tunes CP2K's kernel routines for particular hardware

csd3
libxsmm.slurm
libxsmm.sh
libgrid.slurm
libgrid.sh
cp2kexe.slurm
cp2kexe.sh

/opt/scripts/app/cp2k/

ssh <hostname>

...
cd cp2k-6.1

SIFPATH=/path/to/sif
singularity shell $SIFPATH
HOSTPATH=/opt/scripts/app/cp2k/<hostname>
cp $HOSTPATH/libxsmm.slurm ./
cp $HOSTPATH/libgrid.slurm ./
cp $HOSTPATH/cp2kexe.slurm ./
exit

sbatch –export=ALL,SIF=$SIFPATH libxsmm.slurm
sbatch –export=ALL,SIF=$SIFPATH libgrid.slurm
sbatch –export=ALL,SIF=$SIFPATH cp2kexe.slurm

Host Customization Workflow

50

Post Factory Customization (CP2K – libgrid on CSD3)

#!/bin/bash --login

#SBATCH -J libgrid
#SBATCH -o libgrid.o%j
#SBATCH -e libgrid.o%j
#SBATCH -p skylake
#SBATCH -A dirac-ds007-cpu
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --ntasks-per-node=1
#SBATCH --time=12:00:00

module purge
module load singularity/current

singularity exec $SIF /opt/scripts/app/cp2k/csd3/libgrid.sh

Many variants (8 x 64 x 4 = 2048) of the integrate and collocate routines are
built, run and timed; the variant that produces the correct answer in the
shortest time is retained to generate the optimal binaries.

libgrid.slurm

51

Running CP2K container on CSD3
The entire containerised CP2K build was done on CSD3.

• login: ELPA, libint, libxc and Plumed libraries
• compute: libxsmm, libgrid and CP2K executables as per previous slide

52

Running CP2K container on CSD3

Unfortunately, attempting to run H2O-32 with containerised CP2K
resulted in a segmentation fault (cp_fm_diag.F).

The “baremetal” CP2K, also built from source,
ran H2O-32 and H2O-1024 successfully.

SUBROUTINE cp_fm_syevd_base(...)
...
CALL pdsyevd(...)
...
lwork = NINT(work(1)+100000)
DEALLOCATE (work)
ALLOCATE (work(lwork))
...
CALL pdsyevd(...)
...

END SUBROUTINE cp_fm_syevd_base

2nd call to ScaLAPACK
routine, pdsyevd()

The entire containerised CP2K build was done on CSD3.
• login: ELPA, libint, libxc and Plumed libraries
• compute: libxsmm, libgrid and CP2K executables as per previous slide

Summary and Further Work

53

Get containerised CP2K working on CSD3.
• problem could be due to /proc/meminfo differences
• compare performance not just with baremetal CP2K but also with

containerised CP2K built entirely at factory

Repeat strong scaling runs on Cirrus and ARCHER2.
• extend runs over higher node counts
• do weak scaling runs

Facilitate access to Eleanor Container Factory within EPCC
(and perhaps beyond).

No significant difference between baremetal and
containerised performance.

See also https://ieeexplore.ieee.org/document/8950978.

https://ieeexplore.ieee.org/document/8950978

54

Factory Costs

Factory spec (t1.small) shown in this presentation was insufficient to build
CASTEP and CP2K (libxc).

A “production” factory instance will have running costs.

For example, assuming a spec of 8 vCPUs, 16 GB memory and 160 GB
disk (m1.xlarge flavor), £100 would buy ~1176 hours per user.
https://www.wiki.ed.ac.uk/display/ResearchServices/Cloud+Costs
(link not accessible to non-UoE personnel)

(8 hours x 3 days x 45 weeks = 1080 hours)

Eleanor cloud instances can be “shelved” when not in use to avoid charging.

https://www.wiki.ed.ac.uk/display/ResearchServices/Cloud+Costs

55

Those codes that are trivial to containerise (e.g., Ramses and
GROMACS) are perhaps not worth containerising since
reproducibility overhead is low.

Codes that are difficult to containerise are worth running in
containers as these hide many compilation details that could
potentially delay scientific output.

Conclusions

56

Those codes that are trivial to containerise (e.g., Ramses and
GROMACS) are perhaps not worth containerising since
reproducibility overhead is low.

Codes that are difficult to containerise are worth running in
containers as these hide many compilation details that could
potentially delay scientific output.

We (EPCC) should identify those codes that are particularly
time-consuming to build and therefore would most benefit HPC
users if containerised.

• CP2K, NEMO and FEniCS are perhaps strong candidates

Conclusions

